Introduction
Challenges and Opportunities for the Automotive Industry

For decades, the automotive industry has had an increasingly significant impact on both regional and global economies. Total vehicle production, worldwide, has risen in the past five years to over 50 million vehicles annually, and car ownership density ranges from 800 cars per thousand people in the US, to 5.8 cars per thousand in the People's Republic of China.

While these statistics promise sustainable growth for the mid-range future, the automotive industry is currently facing stiff challenges in a number of key areas:

Globalization
- Increased competition, smaller share of markets
- Pressure to customize and segment vehicle production
- Need for standardization and support for advanced manufacturing across all markets
- Continued goal of a lower break-even point, becoming more cost effective
- Need to create a successful blend of “lean”, transnational production capabilities
- Brand erosion

Industry Consolidation
- Increased scale and complexity of relationships with subcontractors and suppliers
- Pressure to lower component costs
- Outsourcing to reduce development costs and associated overhead, with suppliers assuming system responsibility
- Need for complete solutions

Technology & Innovation
- Search for flexible manufacturing, new design concepts, vehicles that are easier to assemble
- Regional environmental legislation
- Shorter product life cycles
- Higher, more stringent material requirements
- More sophisticated consumer demands

In order to compete effectively in this fast-paced and increasingly complex, competitive environment, enterprising automotive executives constantly optimize their business models and improve existing, or create new, technical solutions. Success requires competent and reliable partners, who can provide solutions and services that increase flexibility, speed operations, lower costs, provide technological advantages, and provide the edge needed to continue as successful players in an increasingly difficult market environment.
For many years, customers have turned to Oerlikon Metco for technological solutions that are effective and profitable. As a global leader in surface engineering solutions and services, we help solve the surface technology challenges faced by the automotive industry.

Surface enhancement engineering basically changes the surface of a material by additive processes such as thermal spray, plasma PVD (physical vapor deposition), CVD (chemical vapor deposition), plasma nitriding or nitrocarburizing (PNC—with or without oxidation) to deposit a thin film or coating that cost-effectively enhances the physical properties of the substrate. In effect, this coating creates a new material superior to either one by itself.

Advantages Surface Enhancement Engineering Advances Your Goals

Classification of Surface Treatments

<table>
<thead>
<tr>
<th>Coating thickness [μm]</th>
<th>Substrate temperature [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>100</td>
<td>1000</td>
</tr>
</tbody>
</table>

- **Welding** (B)
- **Thermal Spraying** (A)
- **CVD (Chemical Vapor Deposition)** (C)
- **PVD (Physical Vapor Deposition)**
- **Ion-Implantation**
- **Chemical Processes**
- **Coating thickness [μm]**
- **Substrate temperature [°C]**

A – Thermal Spray Technology

The advantages of surface engineered thermal sprayed coatings are many:
- Coatings can be deposited at a high rate
- There is a broad range of coating choices
- Small areas as well as large can be coated
- Coatings can be applied to almost any metallic substrate
- The process imparts little heat to the substrate, avoiding distortion of metal surfaces
- Reproducible coating quality
- Portability options
- No volatile organic compounds (VOC’s)
- No drying time required
- The coating process can be integrated into mass-production lines

B – Thin Film Technology

Our PVD thin film coating technology and plasma-supported heat treatment technology provide customers with a flexible choice of friction, wear and corrosion protection. Coatings can be tailored for:
- Tribological features, e.g., surface roughness and low friction coefficient
- Choice of coating hardness
- Heat conductivity
- Electrical insulation or conductivity
- Reduced adhesion of plastics, etc., to molds
- Varied thickness and ductility
- Durable, decorative colors
- Anti-corrosion

C – Friction Technology

We rank internationally among the leading manufacturers of wet friction linings, slip and anti-wear coatings and power transmission components for the passenger car and utility vehicle manufacturing industry. We also develop and produce systems or complete modules according to the customers’ requirements.
- Wet friction linings
- Carbon, brass and molybdenum friction linings
- Optimized coefficient of friction, specific for the individual application
- Slip and anti-wear coatings
- Reduced wear for longer life and lower maintenance of drive train components
- Design support for coating solutions
Since the early days of automobiles, Oerlikon Metco’s surface treatment repertoire has expanded to include a variety of advanced surface treatment processes, including:

Thermal Spray Technology

Combustion Powder
Economical, versatile and reliable, using a wide range of coating materials. Used for rebuild and salvage of crankshaft journals and camshafts, coatings provide impact resistance and chemical corrosion protection.

Combustion Wire
Portable and reliable, wire flame spray is an excellent solution for rebuild and salvage operations; for example, castings and mis-machined parts such as crankshafts, piston rods and small parts. Easily automated for synchronizing rings and other friction parts.

Electric Arc Wire
Uses electricity and compressed air. Minimal equipment is required, and no process gases. Easily automated, versatile and very reliable electric arc wire is used to coat transmission synchronizer rings, clutch discs and shifter forks.

High Velocity Oxy Fuel (HVOF)
Premium quality coatings are dense, hard and can exhibit internal compressive stresses. Particularly well suited to control abrasive, sliding and particle wear. For example, HVOF coatings are used for sliding and wear protection on transmission shifter forks.

Atmospheric Plasma Spray
Delivers high quality coatings of almost any material that can be powdered, including ceramics, metals and cermets. An outstanding example is the Rota-Plasma 500 technology with the F210 Plasma Extension Gun used to coat auto engine cylinder bores.

ChamPro™
In-Chamber Controlled Atmosphere Process—Produces exceptional, high-purity plasma coatings not possible with atmospheric plasma spray. Ideal for producing coatings with precise oxygen levels and for greater thickness without heat distortion.
Plasma-based PVD Thin Film Coatings and Plasma Heat Treatment

The fundamental issue regarding any surface treatment is life cycle economics. These systems not only provide durable, functional coatings, but do so in an environmentally sound, economical manner.

Plasma-based PVD (Physical Vapor Deposition)
Coating Services and Equipment for Application of MAXIT™ Low Friction & Hard Coatings – Provides durable, non-stick, coatings for plastic injection molds and metal stamping dies. Used with high quality automotive interior and exterior components for decorative and wear protection applications, and to apply low friction coatings for engine components to reduce fuel consumption.

Example: PVD coatings for engine parts, gear wheels and clutch hydraulic pistons – were initiated by racers for higher speed and less wear and tear. Today, the potential for fuel economy and better friction properties through this process is gaining widespread use in passenger vehicles.

Plasma Nitriding & Nitrocarburizing
Coating Services and Plasma Heat Treatment Equipment for application of IONIT™ Wear Resistant Coatings – Plasma-nitriding and plasma-nitrocarburizing, processes for diffusing nitrogen and carbon into the surface of steel-based materials, activated by plasma, and resulting in very hard surfaces.

Example: Automotive crankshafts – The crankshaft performs one of the toughest jobs in the engine. Not only does it face extreme heat and pressure from contact with the connecting rods, but it must have a low friction coefficient and fight corrosion caused by petroleum products. Auto manufacturers have found they can improve crankshaft wear resistance greatly by use of the IONIT plasma process for nitrocarburizing. The results of this low temperature process are reduction of friction coefficient, greater corrosion resistance, and prevention of scuffing and metal adhesion due to increased physical stability of the surface.

Plasma Nitriding, Gas Nitrocarburizing Plasma Activation and Oxidation
Coating Services and Plasma Combination Equipment for application of IONIT OX™ Corrosion Resistant Coatings – A patented, extremely cost effective process developed for excellent corrosion and wear protection, and outstanding friction and sliding properties.

Example: Ball end steering assembly – Used extensively for volume production in the automotive industry, the IONIT OX process is favored for its excellent corrosion protection, good friction properties and environmentally friendly features. This process guarantees increased surface hardness, improved fatigue strength and no metal distortion compared to salt bath nitriding or chrome plating. Apart from the significant metallurgical advantages of IONIT OX, its economic effectiveness is spurring its increased use.

We Cover the World with Engineered Coating Solutions, Sales and Services

Our integrated advanced coating systems are used in the automotive industry throughout the world. As your single-source provider, Oerlikon Metco is able to supply:

- Materials
- Integrated Systems
- Coating Services
- Equipment
- Full Customer Support
- Coated Components
Surface Technologies
Oerlikon Metco Has Solutions for Auto Industry Challenges

Friction technology – for higher performance and substantially improved gear shifting

Synchronizer
Besides the time-tested molybdenum friction linings, the new carbon friction linings ensure a more compact synchromesh architecture with higher performance and substantially improved gear shifting. In automated manual transmissions, it is already possible to achieve gear shifting times of less than 60 milliseconds. Furthermore, our synchromesh components from formed sheet metal offer the substantial weight savings and cost reductions.

Friction discs
Oerlikon Friction Systems develops and manufactures friction discs for wet applications. We can meet the high demands imposed on the components by the various applications (limited slip differentials, four wheel drives, automatic power transmissions) through the optimized use of our various friction linings. In particular the minimal wear and the constant coefficients of friction are convincing arguments for our customers.

Gear-shifting components
For selector forks and shifting components we offer special molybdenum and brass coatings that guarantee high wear resistance. Even in automated manual transmissions with their high axial gear-shifting forces, our coatings have proven their high efficiency over time.

Torque converter lock-up clutches
In automatic transmissions the torque converter lockup clutch serves to transmit the engine torque directly to the power transmission, thus achieving a significant reduction in fuel consumption. The use of carbon friction linings simultaneously guarantees an optimization of the gear-shifting process and reduces the noises and vibrations typically associated with converters.
Capabilities
Systems Capabilities and Customized Solutions

Whether your requirements include materials, equipment or finished components, we have a surface engineering solution in our portfolio – thin film or thermal spray – for your project. If not, we’ll develop it.

Today, Oerlikon Metco scientists and engineers routinely research and develop coatings and systems to benefit automotive customers seeking high-quality, cost-effective surface engineering solutions.

The concept stage
We will partner with you in selecting specific surface solutions, develop the most cost-efficient application method, and write the complete coating application specifications.

The prototype stage
We apply the coating solution to selected components to verify that the system and coating are practical, functional and can be integrated into the overall production scheme.

The production stage
We plan, design, develop and build an integrated turnkey coating facility.

The maintenance stage
We’ll be there for the entire lifecycle of your system, providing round-the-clock service, technical support and maintenance contracts to insure smooth operations. No other coating equipment supplier has as many service technicians available as Oerlikon Metco.

A high-end, customized Thermal Spray engine cylinder Bore Coating solution
Fully integrated into the manufacturing production cell

Coating: Wear resistant and lubricious iron-based material
Capabilities
Systems Capabilities and Customized Solutions

Our engineered solutions yield proven benefits

We can partner with you to deliver a turnkey solution that meets your surface treatment needs. Below are examples of how our sales, design, engineering and manufacturing talents are coordinated and focused to meet your specific requirements:

Automotive cylinder bore coating system
Working in close cooperation with major automotive manufacturers, Oerlikon Metco developed advanced spray technology to deposit a thin (150 – 200 microns) plasma coating directly onto aluminum alloy cylinder bores. This process eliminates the need for cast iron or composite cylinder liners. The controlled porosity of the plasma coating helps to significantly reduce the coefficient of friction through a micro-cavity lubrication system. Fully automatic spray facilities, such as those created by Oerlikon Metco, can be integrated into any production setup — in line or cell. Prototype engines using our cylinder bore coating system were operated for up to 400,000 km (250,000 miles) without need of repair. Following on this example, thousands of production cars have been manufactured using our cylinder bore solution. This technology works for gasoline as well as diesel engines and Oerlikon Metco also applies it to high performance race cars, go-karts, motor bike engines, aeroplanes and heavy duty diesel engines.

Automotive transmission components
Oerlikon Metco provides the worldwide standard solution for thermal spray coating of synchronization rings, clutch discs and gearshift forks. About 50% of all cars worldwide have manual transmissions, and drivers are demanding quick, smooth, compact and comfortable shifting. Our total coating solution meets that demand.

Thermal spray coating with molybdenum wire, applied in a highly automated system, guarantees total process reliability and coating reproducibility. The coating provides the correct balance between meshing and gear separation — giving the right feel when a driver changes gears. In the example of the sequential transmission, we offer a patented, hard carbon coating for synchronization rings to meet increased performance and service demands.

Gear selector shaft and other applications
IONIT OX–treated gear selector shafts offer an optimum combination of wear and corrosion protection to the component. IONIT OX is a combination of plasma nitriding, gas nitrocarburizing, plasma activation and oxidizing. Cost effective and offering a great improvement in mechanical properties, such as improved fatigue limit, many automotive products currently utilize this process:

- Transmission components
- Gear selector shafts
- Pneumatic spring piston rods
- Guide bolts
- Other components
Surface Protection Engineering for Automotive Applications

<table>
<thead>
<tr>
<th>Automotive Applications</th>
<th>Surface Engineering Problem</th>
<th>Oerlikon Metco Coating Solutions</th>
<th>Surface Treatment Process</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drivetrain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gear Shift Forks</td>
<td>Friction linings</td>
<td>Carbon friction linings</td>
<td>Carbon solutions</td>
<td>Higher efficiency</td>
</tr>
<tr>
<td>Synchronizing Rings</td>
<td>Slip and anti-wear</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gear Wheels</td>
<td>High friction/ heavy wear/</td>
<td>DLC: (W–C:H)</td>
<td>Plasma PVD/ MAXIT Process</td>
<td>Excellent wear behavior, less friction</td>
</tr>
<tr>
<td>cold welding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phasing Gears</td>
<td>Excessive wear and</td>
<td>Ion Nitriding</td>
<td>IONIT Plasma Nitriding</td>
<td>Improvement of fatigue strength, low friction coefficient</td>
</tr>
<tr>
<td>Synchronizing Rings</td>
<td>fatigue/ cold welding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ball Joints</td>
<td>Corrosion/ friction wear</td>
<td>Nitriding/ Oxidation</td>
<td>IONIT OX Process</td>
<td>Excellent corrosion & wear resistance, less friction, cost savings</td>
</tr>
<tr>
<td>Gear Selector Shaft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Gear Shaft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake Disc Rotors</td>
<td>Lack of constant friction</td>
<td>Metco 101 Ceramic</td>
<td>Plasma Spray</td>
<td>Better stopping with no friction loss in rain</td>
</tr>
<tr>
<td></td>
<td>coefficient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake Shoes</td>
<td>Rapid wear</td>
<td>Metco 447 Ni/Mo</td>
<td>Plasma Spray</td>
<td>Longer service life</td>
</tr>
<tr>
<td>Brake Pistons</td>
<td>Wear/ corrosion</td>
<td>Nitriding/ oxidation</td>
<td>IONIT OX Process</td>
<td>Excellent corrosion & wear resistance, less friction, cost savings</td>
</tr>
<tr>
<td>Engine System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder Bore</td>
<td>Heavy cast iron linings/</td>
<td>Mo, Fe/Mo, Fe and other</td>
<td>RotaPlasma/ Plasma Spray</td>
<td>Eliminates sleeves for lighter, smaller, more fuel efficient engine</td>
</tr>
<tr>
<td></td>
<td>friction/ oil consumption</td>
<td>materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truck Liner</td>
<td>Corrosion/ friction wear</td>
<td>Fe-based/ MMC coatings</td>
<td>Plasma Spray</td>
<td>Longer life, reduced oil and fuel consumption</td>
</tr>
<tr>
<td>Turbocharger Housings</td>
<td>Large clearance path/ loss</td>
<td>Metco 310 AlSi Graphite</td>
<td>Plasma Spray/ or HVOF</td>
<td>Increased engine efficiency of up to 5%</td>
</tr>
<tr>
<td></td>
<td>of efficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piston Rings</td>
<td>Adhesive wear tolerances/</td>
<td>Mo + NiCrBSi or Cr2C2</td>
<td>Air Plasma, Combustion</td>
<td>Better engine performance, less friction</td>
</tr>
<tr>
<td></td>
<td>high oil consumption</td>
<td></td>
<td>Powder or HVOF</td>
<td></td>
</tr>
<tr>
<td>Valve/ Valve Stems</td>
<td>Wear/ corrosion</td>
<td>Steel/ Aluminum</td>
<td>Electric Arc Wire</td>
<td>Longer valve life</td>
</tr>
<tr>
<td>Diesel Injection Pistons</td>
<td>Corrosion/ wear</td>
<td>Mo</td>
<td>Plasma Spray, HVOF/ or</td>
<td>Longer life, less corrosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cr3C2–NiCr WC:H</td>
<td>MAXIT PVD-Arc Process</td>
<td></td>
</tr>
<tr>
<td>Compression Springs</td>
<td>Excessive wear and</td>
<td>Ion Nitriding</td>
<td>IONIT Plasma Nitriding</td>
<td>Improved fatigue strength, less friction</td>
</tr>
<tr>
<td>Crankshafts</td>
<td>fatigue/ cold welding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guide Bolts</td>
<td>Corrosion/ friction wear</td>
<td>Nitriding/ Oxidation</td>
<td>IONIT OX Process</td>
<td>Excellent corrosion & wear resistance, less friction, cost savings</td>
</tr>
<tr>
<td>Other Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal Forming Tools (molds)</td>
<td>Wear, sticking and adhesion</td>
<td>TIN, CrN, AlTiN, ZrN, TiCN and others</td>
<td>MAXIT PVD-Arc Process</td>
<td>Longer life, less adhesion</td>
</tr>
<tr>
<td>Plastic Processing Tools (molds, dies)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automotive Interior/ Exterior Decorative Parts</td>
<td>Corrosion/ wear/ design parameters</td>
<td>ZrN, CrN, TiN</td>
<td>MAXIT PVD-Arc Process</td>
<td>Long lasting beauty, cost effectiveness</td>
</tr>
<tr>
<td>Tappets Bearing Washers</td>
<td>High friction/ heavy wear/</td>
<td>DLC: (W–C:H)</td>
<td>MAXIT Plasma PVD Process</td>
<td>Excellent wear behavior, less friction</td>
</tr>
<tr>
<td>Hydraulic Pistons</td>
<td>cold welding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Spring Rods</td>
<td>Corrosion/ friction wear</td>
<td>Nitriding/ Oxidation</td>
<td>IONIT OX Process</td>
<td>Excellent corrosion & wear resistance, less friction, cost savings</td>
</tr>
<tr>
<td>Exhaust Muffler</td>
<td>Corrosion</td>
<td>AlZn Wire</td>
<td>Combustion Wire or Electric Arc Wire</td>
<td>Lower cost, longer life</td>
</tr>
<tr>
<td>Catalytic Converters</td>
<td>High volume joining/</td>
<td>High strength, cost</td>
<td>Reduced nickel, boron-free</td>
<td>Lower cost, excellent corrosion resistance, high strength</td>
</tr>
<tr>
<td>Heat Exchangers</td>
<td>corrosion</td>
<td>effective braze alloys</td>
<td>filler metals</td>
<td></td>
</tr>
<tr>
<td>EGR Coolers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Applications
Plasma Coated Engine Cylinder Bore

Cut costs, reduce friction, improve fuel use with a longer lasting solution

Endeavoring to meet cost and weight constraints, as well as fuel economy standards, the auto industry has been moving away from heavy cast iron engine blocks to lighter aluminum alloys (AlSi).

To help enable this process, Oerlikon Metco has developed an advanced plasma spray technology for coating AlSi cylinder bores that eliminates the need for cast iron sleeves or composite liners, saving space and weight. Wear resistance of these coatings is an order of magnitude better than cast iron and the heat flow between the combustion chamber and the engine block is much more predictable. Weight of the cylinder block, as well as the pitch distance between bores, is reduced.

Result: a lighter, more compact and fuel-efficient engine, with significantly reduced oil consumption and lower emissions.

The main challenge of an industrial solution for the coating of cylinder bores is not only to develop a suitable material and process, but also to integrate that process into a cost-effective, high-volume, fully automated production coating system. We have met this challenge.

Coatings designed to beat friction
Cylinder bore, piston and piston ring friction represent nearly 40% of the mechanical power losses in the engine.

Using extensive R&D knowledge, Oerlikon Metco has produced a variety of low-friction coatings for aluminum/silicon (AlSi) engine cylinder bore applications. The coatings exhibit:

- Low coefficient of friction
- Superior bonding to the AlSi cylinder substrate
- Thermal shock resistance
- Scuff resistance
- Lower wear rate than cast iron
- Reduction of oil consumption

The main challenge of an industrial solution for the coating of cylinder bores is not only to develop a suitable material and process, but also to integrate that process into a cost-effective, high-volume, fully automated production coating system. We have met this challenge.

Coatings designed to beat friction
Cylinder bore, piston and piston ring friction represent nearly 40% of the mechanical power losses in the engine.

Using extensive R&D knowledge, Oerlikon Metco has produced a variety of low-friction coatings for aluminum/silicon (AlSi) engine cylinder bore applications. The coatings exhibit:

- Low coefficient of friction
- Superior bonding to the AlSi cylinder substrate
- Thermal shock resistance
- Scuff resistance
- Lower wear rate than cast iron
- Reduction of oil consumption

Plasma cylinder bore coating compared to competition

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Cast iron liner</th>
<th>Electric Arc Wire</th>
<th>Nickel/silicon</th>
<th>Oerlikon Metco plasma coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced engine size and weight</td>
<td>Adds to engine size and weight</td>
<td>No added engine size or weight</td>
<td>No added engine size or weight</td>
<td>No added engine size or weight</td>
</tr>
<tr>
<td>Reduced friction between rings and coating/liner</td>
<td>Shows more friction</td>
<td>Less friction, similar to plasma coating</td>
<td>Less friction than cast iron, more than plasma coating</td>
<td>Shows least friction Solution against bore polishing (EGR)</td>
</tr>
<tr>
<td>Wear resistance for heavy duty diesel</td>
<td>Sensitive to bore polishing</td>
<td>No advantage compared to cast iron</td>
<td>Solution not possible</td>
<td>Solution for EGR engine</td>
</tr>
<tr>
<td>Reduced engine oil consumption</td>
<td>Shows more oil consumption</td>
<td>slightly reduces cis consumption</td>
<td>Shows more oil sensitivity</td>
<td>Reduces oil consumption</td>
</tr>
<tr>
<td>Liner or coating resists corrosion against H₂SO₄ and formic acids (new fuels)</td>
<td>More corrosion resistant than Ni/SiC</td>
<td>Same corrosion resistance as cast iron</td>
<td>Corrosion from H₂SO₄</td>
<td>Corrosion resistant coatings for gasolines and diesels</td>
</tr>
<tr>
<td>Environmental impact from manufacturing</td>
<td>Environmental concerns</td>
<td>Few environmental concerns</td>
<td>Major environmental concerns</td>
<td>Few environmental concerns</td>
</tr>
<tr>
<td>Easy integration into production lines</td>
<td>Easy to integrate</td>
<td>Easy to integrate</td>
<td>Difficult to integrate</td>
<td>Easy to integrate</td>
</tr>
<tr>
<td>Cost advantage</td>
<td>Plasma coating is less costly</td>
<td>Similar to plasma coating</td>
<td>Plasma coating is much less costly</td>
<td>Saving of resources</td>
</tr>
</tbody>
</table>

Oerlikon Metco’s cylinder bore solution

1 – As cast and machined
2 – Surface activated
3 – Coated cylinder bore
4 – Final machined (diamond honing)
Solutions
Engineering Solutions for All Types of Vehicles

Oerlikon Metco’s engineered coating solutions help automotive OEMs extend productivity and cut costs without sacrificing quality. Engineered coatings modify a material’s surface and substrate together as a system. This gives effective performance enhancement, which neither the substrate nor the coating could provide on their own. These coatings can be applied under standard atmospheric conditions or in specialized, highly controlled environments, including nearly total vacuum.

Our engineered surface solutions provide superior performance characteristics to many automotive products, both new and remanufactured, as shown below.

Cylinder bores of various engine types can be coated, eliminating the need for cylinder liners.
Cutaway of automobile showing various parts that are coated to enhance longevity and improve performance.

- Turbo housing
- Swash plate
- Alternator
- Drive shaft yoke
- Ball joints
- Synchronization rings
- Gear shifting components
- Friction discs
- Muffler
- Brake discs
We're Flexible: We Can Source Your Components... Coat Your Components... Or Supply You with Equipment and Material

If investing in coating equipment and know-how is not appropriate for your business, we will coat your components, finish them, and return them to you, ready to install.

Oerlikon Metco has vast experience in equipment manufacture and surface engineered coatings. Our coating knowledge and expertise, when applied to subcontract surface treatment – whether thermal spray, plasma nitriding, plasma oxidizing, or PVD – can provide superb quality and value, increasing customer profitability.

Oerlikon Metco has coating services facilities in the Americas, Europe and Japan capable of providing tailored coatings with the following state-of-the-art equipment:

<table>
<thead>
<tr>
<th>Thermal Spray technology</th>
<th>Thin Film technology</th>
<th>Friction technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processes</td>
<td>Processes</td>
<td>Processes</td>
</tr>
<tr>
<td>Powder Combustion</td>
<td>MAXIT– PVD Arc</td>
<td>Thermal Spray Friction</td>
</tr>
<tr>
<td>High Velocity Oxy Fuel (HVOF)</td>
<td>MAXIT– PVD Sputtering</td>
<td>Linings with Molybdenum</td>
</tr>
<tr>
<td>Wire Combustion</td>
<td>IONIT– Plasma Nitrocarburizing</td>
<td>Thermal Spray Friction</td>
</tr>
<tr>
<td>Electric Arc Wire</td>
<td>IONIT OX– Gas/Plasma Nitrocarburizing/Oxidation</td>
<td>Linings with Brass</td>
</tr>
<tr>
<td>Air Plasma</td>
<td></td>
<td>Carbon Friction Linings</td>
</tr>
</tbody>
</table>

Oerlikon Metco's offering

Our Oerlikon Friction Systems wet friction lining solutions are offered through our Surface Solutions business unit.
Flexibility
Our Coating Services Offer Flexibility

Other services
- Turning
- Grinding
- Drilling
- Polishing
- Finishing
- Welding
- Milling
- Machining
- Cleaning
- Heat Treatment

Coated components
We can source semi-finished, uncoated components for your equipment, apply the desired surface engineered solution, and perform any necessary finishing.

We specialize in component design and development. We analyze the mechanical, chemical and tribological requirements of the proposed component, draw up specifications for coating, and perform the testing.

We will manufacture or repair your components
Our engineers will draw up specifications for the manufacture or repair of your components, order the raw materials for in-house work, or subcontract the repair.

We will apply the required coating, finish and perform the final inspection
We can mass-produce parts or single items. We will perform post-finishing operations, such as grinding, etc., and perform a final inspection, including statistical control.
Services
Solutions and Services with Lasting Impact

As a result of years of offering technology-based solutions, Oerlikon Metco has developed the most comprehensive line of surface enhancement equipment and materials in the world. All of our facilities, including our manufacturing facilities, are certified to ISO 9001 standards.

Our full line product portfolio consists of:

- Advanced surface technology equipment, systems and materials
- Thermal spray, thin film coating and surface enhancement services
- Manufactured turbine, automotive and other components
- Global customer support services

A truly global company, Oerlikon Metco has sales offices and facilities in 18 countries on five continents. Our family of more than 1800 dedicated professionals work from these locations to deliver advanced surface engineering solutions, services and products. We support thousands of customers in hundreds of industries, with leading-edge applications development, state-of-the-art automated systems, field service, calibration, specialized coating services, spare parts, customer support, high quality braze products and more than 400 top-quality surface engineering spray powders and wires.

Oerlikon Metco has what it takes to create and sustain success: world class products, systems and services. Our global team has the enthusiasm, vigor and commitment to make Oerlikon Metco a respected partner for our customers and a value for long-term investors.

We offer a full line of surface enhancement materials and continually improve and add new products to our portfolio.

The materials we manufacture are consistently evaluated to make sure they conform to our rigid standards.
Automotive
Advanced Technology Solutions and Services

Perfect solutions through optimum materials and innovative technologies

Oerlikon Metco is a global leader in surface engineering solutions and services offering:

- A broad range of thermal spray, thin film, laser cladding and other advanced surface technology equipment and materials
- Integrated systems
- Specialized coating and surface enhancement services
- Manufactured components for the turbine, automotive and other industries
- Customer support services

Oerlikon Metco provides a comprehensive manufacturing, distribution and service network, catering to aerospace, power generation, automotive and other strategic growth industries.

To take control of your surface engineering challenges, contact your Oerlikon Metco sales office, visit our website at www.oerlikon.com/metco or email us at info@oerlikonmetco.com

About Oerlikon Metco

Oerlikon Metco enhances surfaces that bring benefits to customers through a uniquely broad range of surface technologies, equipment, materials, services, specialized machining services and components. The surface technologies such as Thermal Spray, Thin Film, Plasma Heat Treatment and Laser Cladding improve the performance and increase efficiency and reliability. Oerlikon Metco serves industries such as aviation, power generation, automotive, oil & gas, industrial and other specialized markets and operates a dynamically growing network of more than 50 sites in EMEA, Americas and Asia Pacific. Oerlikon Metco, together with Oerlikon Balzers, belongs to the Surface Solutions Segment of the Switzerland-based Oerlikon Group.

Information is subject to change without prior notice.